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We introduce a dimensional reduction procedure for a spinor field and a 
generalization of the minimal coupling scheme. We get an electric dipole moment 
of fermions of value l0 -31 cm and PC breaking for a gauge group G with odd 
parameters. Reflection in higher (additional) dimensions are proposed as a 
conjugation of "color" charges connected with Yang-Mills fields. Our approach 
cancels Planck's mass terms in the Dirac equation. 

1. INTRODUCTION 

In this paper we deal with spinor fields in the framework of non-Abelian 
Klein-Kaluza theories. We generalize methods and results from Thirring 
(1972) and Kalinowski (1981a, 1981b) to a non-Abelian case. To do this we 
introduce on P an (n +4)-dimensional Klein-Kaluza manifold (Kerner, 
1968; Cho, 1975; Kalinowski, 1983) a spinor field belonging to the funda- 
mental representation of SO(1, n+3). We assume that this spinor field 
depends on group coordinates in a trivial way, i.e., by the action of group G 
(G is a gauge group of Yang-Mills fields which we combine with gravity in 
the Klein-Kaluza framework). 

We introduce for this spinor field new kinds of gauge derivatives. These 
gauge derivatives were defined in Kalinowski (1981a, 1981b) in a five- 
dimensional (electromagnetic) case. We generalize here this approach. 
Simultaneously we define a dimensional reduction procedure for spinor 
fields. It contains three steps: 

1. We take a section of the bundle P and apply it for a spinor field '/'; 
2. We restrict SO(I, n +3) to SO(1,3) for ~; 
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3. We decompose �9 to spinor fields belonging to the Dirac representation 
of SL(2,C).  

After this we get on space-time E a tower of 2 1"/21 fermions fields. 
In Kalinowski (1981a, 1981b) one introduces a similar construction for 

the five-dimensional (electromagnetic) case. Here we clarify this construc- 
tion as a kind of dimensional reduction. 

After this we generalize a minimal coupling scheme for a spinor field 
if'. We define on P an (n + 4)-dimensional manifold, a Lagrangian form. In 
this Lagrangian we substitute the new gauge derivative for the field ,t,. This 
procedure is a simple generalization of that form (Kalinowski, 1981b). In 
the Lagrangian we obtain a new term similar to that from Kalinowski 
(1981b). In Kalinowski (1981b) such a term was interpreted as an interac- 
tion of an electric fermion dipole moment with the electromagnetic field. 
Here the interpretation is more complex. If we perform the dimensional 
reduction procedure we get on E (space-time) a sum of Lagrangians for all 
fermions from a tower describing interaction of these fermions with gravity 
and Yang-Mills fields in the usual way plus new terms. These new terms 
describe interactions of the Yang-Mills fields with fermions from a tower. 
If the number of group parameters is odd (dimG = 2 l +  1) some of these 
terms may be interpreted as an interaction of fermion electric dipole 
moments with the electromagnetic field. In the case of even parameters of 
group G (dimG = n = 2l) such terms are absent. Thus a fermion electric 
dipole moment is possible only in the case of odd parameters. But apart 
from these terms we have also other terms. These terms may be treated as 
anomalous dipole moments for "magnetic" parts of the Yang-Mills field. 
In the case of odd parameter groups we have PC breaking. This breaking is 
obviously very small because the value of fermion dipole electric moments is 
about 10 -31 [cm] q. Similarly as in Kalinowski (1981b) this value is built 
only from fundamental constants. 

In the paper we define also discrete transformations on P and interpret 
them as operators of parity, time-reversal, charge conjugations, PC, and 
PCT. Charge conjugations are defined as reflections in n additional dimen- 
sions (gauge dimensions). The paper is organized as follows. In the first 
section we describe some elements of the non-Abelian Klein-Kaluza theory 
and define geometric quantities which we use all along in the paper. In the 
second section we introduce a dimensional reduction procedure. In the third 
we introduce gauge derivatives of new kinds for a spinor field ~t' and 
generalize the minimal coupling scheme. We get here new terms in the 
Lagrangian. In the fourth section discrete transformations for a spinor field 
q' on P are defined. In the Appendix we deal with elements of the Clifford 
algebras which we use in the paper. 
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2. THE KLEIN-KALUZA THEORY 

Let us in t roduce the principal fiber bundle  P over the space-time E 
with the structural group G and with the projection 7r and let to be a 
connect ion form on P. 

Let us suppose that (E ,  g )  is a manifold with a metric tensor g and 
Riemann  connect ion ~ a ,  where g = g~o/7"| ~. The signature of  g is ( -  - 
- + )  and 0 ~ is a frame on E. Let us introduce a natural  frame on P. 

OA=(vr*(g") ,O"=2t to  ") X > 0 ,  const  (1) 

to = to~X. is a connect ion on P. The two-form of curvature of  connect ion to 
is 

f~ = hord to = (1/2)H~,,O u A O"X~ (2) 

f~ obeys the structural Car tan 's  equation:  

= do: + 1 /2[ to ,  60] (3) 

Bianchi 's identi ty for to is 

hord f~ = 0 (4) 

The map e : E D -o p ,  so that e.  ~r -- id is called a cross section. F r o m  the 
physical point  of view it means a part icular  choice of  gauge. Thus 

e'to = e*( toaX,~) = A~O~'X~ 

e*~ = e*(~aX,,)  = 1/2F~,,O ~' A O'X~ (5) 

where 

a a a g",a d b d c  (6) 

X~, a = 1,2 . . . .  d i m G  = n are generators of  the Lie algebra of  group G and 
[ xo, xb] = c bxc. 

A covariant  derivative on P with respect to co, d~ is defined as follows: 

d lxI '=  h o r d g '  (7) 

This derivative is called a "gauge"  derivative, where ~ is, for example, a 
spinor field on P. 
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It is convenient  to introduce the following notations.  Capital  latin 
indices A, B, C run i, 2, 3,4 . . . . .  n + 4, dim G = n. Lower case greek indices 
a, r ,  y, 8 = 1,2, 3, 4 and lower case latin cases a, b, c, d = 5, 6 . . . . .  n + 4. The 
symbol  " - "  over O ~ and ~o~a (i.e., 0~, ~ a )  indicates that both  quantities are 
defined on E. 

Let us introduce now a tensor 3' = 7ABOA| B on the manifold P in the 
natural  way (Trautman,  1970, 1971b, 1973a) let X, Y ~ Tt~n(P). 

7 ( X , Y ) = g ( r r ' X ,  T r ' Y ) + h ~ b O ~ ( x ) O b ( Y )  or 

y = ~r*g + h~hO"| h (8) 

Tensor  Y has signature ( - - + ~ . . . . . .  ~ ). 
Y 

,,1 times 

hat, c d = C,~dC~b is a Killing's tensor on G. In  this frame this tensor has the 
form 

0 I h~h 
(9) 

It is clear that  the frame 0 A is partially unholomical ,  because 

( 1 ) 
d O a = h  f P ~ - - - ~ C ~ O b  A O ~ ~=0 (10) 

We also introduce a dual frame 

(11) 

We have ~A = ( ~ ,  ~a) and according to Trau tman  (1970) 

EY = 0 (12) 

Thus  ~a are Killing's vectors of  metric V. Let us define now the Riemannian  
connect ion ~0AB on P and the exterior covariant  derivative D with respect to 

~ A  B 

DYAB = 0 and D8 A = 0 (13) 
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The solution of (13) is 

1 
~o ab = _ ~oba = _ ~ r  Oc  

(14) 

~0AB is invariant with respect to the action of group G (Cho, 1975). In 
Kalinowski (1981a, 1981b) we introduce new kinds of gauge derivatives for 
a spinor field ,t'. Because of the derivatives we avoided some troubles which 
appeared in Thirring (1972). We get for the electromagnetic case [G = U(1)] 
the fermion electric dipole moment without the Planck's mass term in the 
Dirac equation. In the Klein-Kaluza theory )~ = 2e(~/G-/c2), e 2 = 1, where G 
is the gravitational constant and c is a velocity of light in vacuum. This 
condition originates from the consistency between the equation in the 
Klein-Kaluza theory and Einstein equation (Kaluza, 1921; Lichnerowicz, 
1955a; Kerner, 1968). It is worth noting that this condition does not 
determine the sign of )~. It was unnoticed in Thirring (1972) and Kalinowski 
(1981a, 1981b). Now we define the dual Cartan's base on E. Let 771234 = 

( -  det g)V2 and ~/~v8 is the Levi-Civith symbol and 

(15) 
tl = 1 / 4 0  ~ A ~/~ 

Details concerning elements of geometry mentioned here can be found in 
Trautman (1970, 1971, 1980), Kobayashi et al. (1963), and Lichnerowicz 
(1955b). 

3. DIMENSIONAL REDUCTION 

Let us consider the group SO(l, n + 3) and its fundamental (complex) 
representation of dimension K=4.2 tn/21, where [n/2]=l for n = 2l or 

21+1: 

U(g)xt ,(X)=DF(g)~(g- 'X) X~M","+3), g~SO(1,n+3) 

(16) 
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SO( 1, n + 3) acts linearly in M ~ "+ 3) [(n + 4)-dimensional Minkowski space]. 
The Lorentz group S O ( 1 , 3 ) c S O ( 1 , n  +3). Thus after restriction g to 
subgroup SO(l ,3)  we obtain a decomposition of O F (Barut et al., 1977) 
according to 

D F I s o ( , . 3 ) ( A ) = L ( A ) ~  . . .  ~ L ( A ) ,  A ~ S O ( 1 , 3 )  (17) 
J 

[ n / 2 ]  times 

where 

L ( A )  = DO/2"~176 

is the Dirac representation of SO(l ,  3). The decomposition (17) for a spinor 
't' has a form 

q~2 

,t'[so(~.3) = (18) 

where ~k,, i = 1,2 . . . . .  2 In/21 are spinors belonging to the Dirac representation 
(L  = D~176176 Thus, owing to the decomposition (18) we get a 
tower of 1 /2  spin fermions. 

More precisely, we deal with representations of Spin(l, n + 3) and Spin 
(1,3) --- SL(2,C).  

Let us turn to a manifold P. It is a metric manifold (P,  3') with a metric 
tensor y. At every point p element P a tangent space Tp(P) = M o.'+3). Let 
q ' : P ~ C  x ( K = 2  t ' /zl) be a spinor field on P at every point p ~ P  
belonging to fundamental representation D F of group SO(l ,  n + 3). 

For spinor field 9 we suppose the following action of group G: 

+(pg , )  = o ( g i - ' ) + ( p )  (19) 

where p = (x, g) ~ P, g, gt ~ G. o is a representation of group G in 4.2 In/21- 
dimensional complex space�9 

If we take a section e: E ~ P we get a spinor field ' t ' (e(x))  on the 
manifold E (space-time). Thus it means that at every point x ~ E we have 
after restriction to SO(1,3) spinor eg[soo,3 ) and for it the decomposition 
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(18) is valid. Thus 

( e*X~ )lso<l,3)( x ) = 
4 (x) 

q~2["/Zl(x) 

(20) 

Spinor fields 't 'i(x ), i = 1,2 . . . . .  2 tn/21 are spinor fields at every point x ~ E 
belonging to the Dirac representation L = D~~176176 Such a proce- 
dure we will call the dimensional reduction for a spinor field. In this way we 
get a tower of Dirac spinor fields on E. The following graph symbolizes it: 

q, restriction 
e*'~ - - ' ,  e*qZlso([.3) = 

section of P from SO(I, n + 3) 
to SO(1,3) 

41 

q'2 

~b2[n/2] 

(21) 

In Kalinowski (1981a, b) we dealt with (in a similar context) five-dimen- 
sional (electromagnetic) case [G = U(1), n = 1]. Thus we have the de Sitter 
group SO(1,4) and we dealt with spinor ~' belonging to fundamental 
representation of group Spin(I,4) --- Sp(4). But for this case we have dim D F 

�9 F = d i m  Diso(t ,3)  and after dimensional reduction we get only one spinor field 
on E. The procedure (21) explains a construction given in Kalinowski 
(1981a, b). This procedure points out how to obtain a set of Dirac spinor 
fields l~i o n  E if one has a spinor field on P (with a special dependence of 
higher-group dimensions). But from the physical point of view more inter- 
esting is the opposite case. Really we have several spinor fields on E with 
which we connect physical fermion fields. From time to time it is possible to 
build a tower from these physical spinor fields. There were some attempts in 
constructing such towers (Kerner, 1980; Palla, 1978; Pati, 1980). Thus from 
physical point of view it would be interesting to describe physical fermions 
as a spinor field on P belonging to a fundamental representation of 
S O ( l ,  n +3)  [Spin(l, n +3)]. Maybe it helps us in understanding of the 
generations of fermions. Now it is difficult to proceed because a group G 
(gauge group for Grand Unified Theories) is not well established and one 
suspects there are possibly many new generations. We know from an 
asymptotic freedom argument in Quantum Chromodynamics that a number 
of generations may be smaller than 9 (greater than 2). 
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4 .  S P I N O R  F I E L D  O N  P 

Let 'Is be a spinor field on P belonging to fundamental representation 
D F of SO(I ,  n +3)  [Spin(l, n +3)] and let F A, A = 1,2 . . . . .  n + 4  be a repre- 
sentation of the Clifford algebra for SO(l ,  n +3)  acting in the space 
representation of D r, i.e., F A E C(1, n + 3) 

(I" A, F n) = 2gAB, F A ~ L(C  k) (22) 

K = 4.2 t"/21, In /2]  = 1, where gAB = d i ag ( -  1, - 1, - 1, 1 - 1 . . . . .  - 1 ). We 
k. J 

introduce a spinor field 7 :  "~ n t i m e s  

7 = q ' + B  (23) 

where " + "  is Hermitian conjugation and 

F "§ B F " B - '  (24) 

It is easy to see that 

7 ( P g , ) = 7 ( P ) o ( g , )  (25) 

where P E (X, g) E P, g, gt ~ G, a is a unitary representation of group G 
acting in 4.2t"/2]-dimensional complex space, o E L(Ck).  Fields 't' and 7 
are defined on P and P is assumed to have an orthogonal coordinate system 
0 A. This coordinate system is in general nonholonomic. We perform an 
infinitesimal change of frame O A: 

oA'= OA +30A = OA--e~ OB, eAB+ ~BA = 0  (26) 

Suppose that field q' corresponds to 0 A and "I" to 0 A', then we get: 

' I " =  'I' + 6'I '  = "I' - eA BOA B'I' 

7 ' =  7 + 8't' = "I" + q'dAB~ AB 
(27) 

where 6AB = ~[F A, FB]. Now we consider covariant derivatives of spinor 
fields 'Is and 7 on P with respect to ~0AB. We get 

D'al = d41 + oaAB6Ae"P 

D 7  = d 7  - ~OAB76AB 
(28) 
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In Kalinowski (1981a, b) one introduces new kinds of "gauge" derivatives 
for the five-dimensional case. Now we generalize the approach to an 
arbitrary gauge group G: 

D ~  = h o r D ~  = dl'~' + hor(~0AB)#aS~ 

D ~  = h o r D ~  = d t~  - hor( o: '~s)~dAB 
(29) 

Horizontality is understood in the sense of a connection o~ on a bundle P. 
Using (4) one gets 

ab- D,t, = D,I, - ~ H ~  IV.,  L l , o ,  

a h -  OY' = D ,  + * [ L ,  vb]o  
(30) 

where 

D't '  = horD'~' 
(31) 

'l)xI' = h o r D ~  

D is an exterior covariant derivative with respect to ~ 0  (on E). /ff is the 
normal gauge derivative and the generally covariant derivative with respect 
to ~ 0 .  It describes the well-known minimal coupling scheme between 
spinor field 'I', the gravitational field, and Yang-Mills fields. It is easy to 
see that these new "gauge" derivatives induce on P a new connection 

o3,4 B = hor(~AB) (32) 

We work with O3AB rather than 0~AB. In Kalinowski (1981a, b), because of 
these gauge derivatives one gets a fermion electric dipole moment and 
avoided well-known troubles (Thirring, 1972) (Planck's mass term in the 
Dirac equation). The connection o3,4 B has many interesting properties. In 
Kalinowski (1983) it was proved that the scalar of curvature for o3A~ is the 
sum of the scalar curvature for Gt~ (on E) and -(X2/4)habFa~'~Ff, 
(Lagrangian of Yang-Mills field for gauge group G). For r we get 
additionally an enormous cosmological term (Cho, 1975). For Dirac fields 
on E we have the Lagrange 4-form (Trautman, 1973; Kalinowski, 1981a, 
1981b): 

Lo(~ ,~ ,d  ) = ihc --~-- ( qTl A d~+d~kAl~)+rn~71 (33) 

where 1 = ~,~rl ~. 
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Now we pass from +, ~ to ',t', ~ and from d to D. In this way one 
generalizes the minimal coupling scheme. Classically we should pass from d 
to d~. Thus one easily writes 

L o ( x l t , ~ ,  D )  = ihc - - -  - -~  ( xI, l A D xt, + D ~  A l ff" ) + r n ~ t ,  ,1, where  l = F~ ,l ~ (34) 

Using (30) one easily gets 

% ( , ,  D) = %(,I,, ry] ,n (35) 

and 

2 v/-~h=2 delq +0.95• -31[cm]q (36) 

where /PI is Planck's length, a the fine structure constant, q elementary 
charge, and e z = I. 

If one performs the dimensional reduction (21) for LD(q',',I,, D) one 
easily gets (see Appendix A) 

21./21 

-* E 
dimensional  i = I 

reduction 

(37) 

Thus one obtains the interaction between spinor fields q,~, i = 1,2 . . . . .  2 f'/21 
and gravitation and Yang-Mills fields in the usual way. It is worth noticing 
that all fermions ~p, have the same mass m. If one assumes that all 
elementary particles get their masses due to Higgs' mechanism one may put 
m = 0. Thus we deal with massless fermions. In some cases it is possible to 
incorporate Higgs fields into Yang-Mills fields with some symmetries over 
a space-time with extra dimensions (Forgass et al., 1980; Manton, 1979; 
Mayer, 1981; Mecklenburg, 1981; Witten, 1977). Thus it seems possible to 
obtain fermions ~k~ with different masses. This will be done elsewhere. 

Now we deal with Yang-Mills fields and should work with a concrete 
useful representation of F A. We will consider the cases n = 21 and n = 2l + 1 
separately. 

If we suppose that the group G is a gauge group which unifies 
electromagnetic, weak, and strong interactions, then G has a subgroup U(1) 
corresponding to electromagnetic interactions after breaking the symmetry. 
Let dimG - 21 + 1 and let the parameter of electromagnetic subgroup U(1) 
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correspond to A = n + 4 = 21 + 5. Then we turn to the additional term in the 
Lagrangian (35) and perform the dimensional reduction for b = n + 4 = 2l 
+ 5. One easily gets 

. 21n/21 
�9 IpI aft --  5 ie E F~t+s+i'Y ~ 

V~ i=1 

where F2~+ 5 = F~t~ (electromagnetic field). Thus we get for all fermions an 
electric dipole moment of the order (36) (Kalinowski 1981a, 1981b). If 
dimG = 21 then this term is forbidden and we have no fermion electric 
dipole moment. If such electric dipole moment exists then it means the 
unified gauge group G as an odd number of dimensions�9 In Borowiec 
(1979), Kerner (1980), and Mecklenburg (1982), one considered Dirac fields 
on a many dimensional manifold of the Klein-Kaluza type. But unfor- 
tunately in these approaches fermions possess minimal masses about 1 /~g 
(Planck's mass terms) as in Thirring (1972). Our approach avoids these 
troubles as in Kalinowski (1981a, b). In Mecklenburg (1982) it is possible to 
cancel Planck's mass term. His approach really differs from ours and fails in 
the five-dimensional case. 

5. DISCRETE TRANSFORMATIONS ON P 

Now let us consider operations of reflections defined on the manifold 
P. To perform this we choose a local coordinate system on P: 

XA = (ga,  ga), g a =  ( X , / )  (38) 

Then q ' ( p )  = ~ ( X  A) = 't'((X, t), X ~) and define transformations: space 
reflection H,  time reversal T, charge reflections C, and combined transfor- 
mations IIC, 0 = IICT in the following way: 

xo, xo , -  xo) 

where ~-1~___ - -  1-';. 

It is easy to see that 

(39) 

where o t is a Pauli matrix and C is an ordinary charge conjugation matrix 

[ n/21 

(o c) rI o, (40) 
g =  c 0 i=1 
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on E (see Appendix). Performing the dimensional reduction (21) one gets 

~Ci(x")=C~*(X'~ ), i = 1 , 2  . . . . .  2 ['/21 (41) 

and all color charges connected with Yang-Mills fields change signs. In 
Thirring (1972), Kalinowski ( 1981 a, b), Rayski (1968) a similar problem was 
considered in the five-dimensional (electromagnetic) case. The reflection in 
coordinate X 5 was interpreted as an electric charge conjugation. For the 
space coordinate reflection we have 

'I 'n (X ", X a) = F4~I'(- X, t, X a) (42) 

Performing the dimensional reduction (21) one gets (see Appendix) 

qjn(x, t) = "y4q,,(-X, t) i =  1,2 . . . . .  2 ['/21 (43) 

i.e., a normal parity operator on E. For the transformation of time reversal 
T we have 

q / r ( X ,  t, X a) = e - ' r '  r 2 r 3 e * ( x ,  - , ,  - x o)  (44)  

Performing the dimensional reduction (21) one gets (see Appendix) 

~r (x ,  t) = C-'7]7273+*(X, - t) i = 1,2 . . . . .  21"/21 (45) 

and all color charges connected with Yang-Mills fields of gauge group G 
(dim G = n) change sign, i.e., a normal time-reversal operator on space-time. 
For the transformation 0 = 1-ICT we put 

�9 ' (X, t, X ~ = - iF2 t+sq ' ( -X ,  t, X ") (46) 

where l =  In/2]  and F 2/+5= ~,5| I (see Appendix A). Performing 
the dimensional reduction (21) one gets 

q,f(X, t) = - i 75# i ( -X ,  t) (47) 

For the transformation 1-IC one gets 

ffcnC(x, t, X ~) = F4Cq '* ( -X ,  t , -  X" ) (48) 

Performing the dimensional reduction one gets 

~p,nC(X, t) = ~,4C~p*( - X ,  t) ,  i =  1,2 . . . . .  2 ('/21 (49) 

and all charges change sign. 
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It is clear that transformations obtained by us here do not differ from 
those known from the literature. 

The additional term in Lagrangian (25) (in the case n = 2t + 1) breaks 
symmetry UC or T in an analogous way as in the five-dimensional case 
Thirring (1972), Kalinowski (1981a, b). This can be easily seen by acting on 
the Lagrangian with operator I-IC defined by (48). 

APPENDIX A 

In this Appendix we deal with the Clifford algebra (Atiyah et al., 1964; 
Cartan, 1966) C(1, n + 3). Owing to decomposition rules for C(1, n + 3) we 
write down a useful representation for F A in terms of 3'~. It is well known 
that any Clifford algebra can be decomposed into a tensor product of the 
four elementary Clifford algebras (Atiyah et al., 1964; Cartan, 1968): 

C(0, 1) = C -complex  numbers 

C(1,O) = RCR (A1) 

C(0, 2) = H = quaternions 

We have 

Because we deal 
Clifford algebra C(1,3) and we easily get 

) C(1,n  +3) = |  |  
\ i = l  

/ i = l  

It is well known that either 

o r  

C(1,n  +3)  = C(0 ,2) |  + 1) (A2) 

with dimensional reduction to space-time E we define 

( iffn +3 = 2l, l ~ N r )  C(1,n+3)=C(1,n+4) 

(A3) 

(A4) 

C(1,n+2)=C(l,n+3) (iffn+3=21+l,lEN~) 
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Let y~ ~ L(C 4) # = 1,2, 3, 4 be Dirac matrices obeying conventional relations 

(Y~, 7.) = 2rt~. (A5) 

~,,, = d i ag ( -  I, - 1, - 1, + 1) 

Y5 = YlT2Y3"/4, Y52 ~--" -- 1 

and let a i ~ I_(C2), i = 1,2,3 be Pauli's matrices obeying conventional rela- 
tions as well: 

(o,, oj) = 26~j (A7) 

[o,, oil = ~, :o ,  (A8) 

We introduce also the following notations: 1 ~ L(C 2) is a 2 •  unit matrix 
and ff ~ L(C 4) is a 4 • 4 unit matrix. Thus one performs the decomposition 
(A3) and easily gets 

[n/21 ) 

f ' z = y g |  I'-[ |176 (A9) 
i=1 

or 

0 ~ / 10) 
F" ( Y" 

For A :~/z one gets (in the case n = 21): 

(76) FZP+I = i ~ |  |  |174 H G~ 
i=1 

I i= l  
(A l l )  

where 4 < 2p + 1 < 2p +2  ~< n + 4  = 21+2. 
In the case n = 21 we define also a matrix: 

r"+5=i?(l +1) I-I r"=(v~) |  , o ,  = r  ~'+~ 
A = I  i=1 

(AI2) 
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o r  

rn 5_ (0 5  5)0 
w h e r e  n = 21, l ~ N~ ~ 

I f  n = 2 l  + 1 we  h a v e  ~,A = F A, A = 1,2 . . . . .  21 +4: 

~ n + 4  ~ r21+5 = 

I t  is easy to check  tha t  

( F Z l + 5 )  2 = - 1 a n d  

(~'A, F2 '+5)  = 0 

( t . / 2 , )  
B=ff~ I-I ~ol , 

(A13)  

) ,A,4) ./5 

f o r A  ~: 2 l + 5  

y~'+ = / ~ y ~ ' B -  I 

(A15) 

(A16) 
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